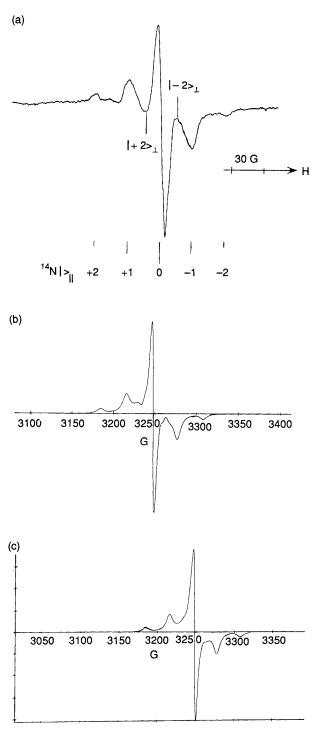
799

## An ESR Study of the Radical Cation of trans-Azobenzene

## **Christopher J. Rhodes**

Department of Chemistry, Queen Mary College, University of London, Mile End Road, London E1 4NS, UK

ESR spectroscopy shows that the radical cation of *trans*-azobenzene exists as the  $(n_{-}) \sigma$ -state, with negligible delocalisation of spin density onto the phenyl groups.


There is currently considerable interest in the properties of radical cations formed from azo-compounds. Most of the information to date has been obtained on the basis of product studies,<sup>1</sup> but, recently, more direct evidence has been obtained by ESR spectroscopy<sup>2—6</sup> for azoalkane radical cations formed in freon matrices under cryogenic conditions. Ionisation of an azo-group can, in principle, take place from either the N=N  $\pi$ -orbital or the out-of-phase lone-pair combination (n\_) giving  $\pi$ - or  $\sigma$ -cations, respectively.<sup>7</sup> Photoelectron studies indicate that in azoalkanes, the n\_ level

lies at higher energy than the  $\pi$ -level and so  $\sigma$ -cations are expected. While ESR results for the 2,3-diazabicyclo[2.2.2]octene (DBO) cation show that it is indeed formed in the  $\sigma$ -state, in which the SOMO is extensively delocalised into the C-C  $\sigma$ -system,<sup>4-6</sup> the small isotropic (<sup>14</sup>N) couplings and large nitrogen 2p spin densities found in open-chain azoalkane radical cations have led their assignment to the  $\pi$ -state.<sup>2,3</sup>

In this communication, results are reported for the radical cation of *trans*-azobenzene. Figure 1(a) shows a spectrum recorded from PhN=NPh following X-irradiation in a solid

Table 1. ESR data for azobenzene radical cations and related radicals.

| Radical                                   | $A_{\parallel}$ | $A_{\perp}$ | $A_{\rm iso}$ | 8      | $g_{\perp}$ | $g_{ m iso}$ |
|-------------------------------------------|-----------------|-------------|---------------|--------|-------------|--------------|
| PhN=NPh+•                                 | 30.8            | 7.5         | 15.3          | 2.0026 | 2.0014      | 2.0018       |
| Me <sub>2</sub> CHN=NCHMe <sub>2</sub> +• | 24.0            | 0           | 8.0           | 2.0026 | 2.0080      | 2.0062       |
| PhN=NPh-•                                 | 14.0            | 0           | 4.7           |        | _           | ca. 2.003    |



**Figure 1.** (a) ESR spectrum of azobenzene radical cations isolated in a solid CFCl<sub>3</sub> matrix at 77 K, (b)  $\sigma$ -simulation obtained using the parameters given in Table 1, (c)  $\pi$ -simulation; see text.

CFCl<sub>3</sub> matrix at 77 K. It is evident that there are five major hyperfine features present, from which a parallel coupling  $(A_{\parallel})$ of 30.8 G can be measured. In contrast with the spectra of the open-chain azoalkane cations,<sup>2,3</sup> where  $A_{\perp}$  was not clearly resolved, there are additional perpendicular components, giving  $A_{\perp}$  7.5 G; this is confirmed by the simulation shown in Figure 1(b). From this data, an isotropic coupling of 15.3 G can be derived. Therefore, the contribution from the nitrogen 2s component to the SOMO has increased substantially from that observed for the RN=NR cations (e.g., ca.  $8 \pm 2$  G in Me<sub>2</sub>CHN=NCHMe<sub>2</sub>+\*, Table 1); a result most reasonably explained in terms of a  $\sigma$ -structure for the azobenzene cation. The simulation in Figure 1(c) was obtained using a value of  $A_{\perp}$ 5.9 G, which is the minimum possible for a  $\pi$ -structure according to the atomic parameters<sup>8</sup> for a N=N *localised* SOMO with a 2p spin density of 0.5 on each nitrogen atom. Any delocalisation of the electron would increase  $A_{\perp}$  so that the perpendicular features were fully resolved, since  $A_{iso}$ would require a larger value in this case. At any rate, the minimum possible isotropic coupling is 14.2 G, which is incompatible with a  $\pi$ -structure.<sup>3</sup>

From the ratio of p/s electron spin densities of 16.5, Ph-N=N bond angles of ca. 160° can be estimated by the usual approximate procedure.8 Since this is much greater than the ca. 130° obtained from MO calculations on RN=NR+\* cations, 9-11 for which  $\sigma$ -structures are predicted, a high degree of bent-bonding (incomplete orbital following) is implicated,12 although the value calculated from the ESR data may be taken as a measure of interorbital angles and suggests that substantial bonding character is introduced between the nitrogen atoms (represented by:  $-N=N- \leftarrow -N=N-$ ) on ionisation. As the sum of the p + s orbital spin densities on the nitrogen atoms is 0.97, the SOMO must be very highly confined to the N=N unit, and hence the degree of delocalisation onto the phenyl groups can be only very small. This implies a structure in which both phenyl rings and the N=N group are coplanar, so that direct  $\pi$ -delocalisation of spin density from the  $n_{-}$  orbital is prevented.

Further evidence for a difference in the electronic structure of the azobenzene cation from that of open-chain azoalkane cations is provided by its g-tensor data; this is compared in Table 1 with that for the azoisopropane cation. The  $g_{\parallel}$  axis is taken as being close to the  $A_z$  axis, and is near the spin-only value; however, the  $g_{\perp}$  component is below free-spin, in contrast with the azoisopropane cation for which  $g_{\perp} = 2.0080$ . These  $g_{\perp}$  shifts will be discussed more fully elsewhere.<sup>11</sup>

It has been suggested previously<sup>13</sup> that the five-line spectrum ( $A_{iso}$  9.3 G) observed in a flow-system during reduction of PhN<sub>2</sub><sup>+</sup> ions with sodium dithionite, and assigned to PhN<sub>2</sub><sup>+</sup> radicals,<sup>14</sup> is in fact due to the azobenzene radical cation. If this assignment is correct, the much lower  $A_{iso}$  value was observed in solid freon suggests that the proposed reaction (1)<sup>15</sup> leads to the alternative  $\pi$ -state of the azobenzene cation.

$$PhN=N^{+} + Ph' \rightarrow PhN=NPh^{+}$$
(1)

However, the magnitude of the isotropic coupling implies that the spin density on the N=N unit must be close to unity<sup>†</sup> (*i.e.*, that there is virtually no delocalisation onto the phenyl groups). This contrasts with ESR results for other  $\pi$ -radical cations with phenyl substituents which show them to be partially delocalised species,<sup>3.16</sup> and with hyperfine data for the corresponding azobenzene  $\pi$ -radical *anion* (see Table 1)

<sup>†</sup> By means of the spin-polarisation parameters derived in ref. 3, and assuming that the spin densities on the two nitrogen atoms are equivalent, by symmetry, a total  $\pi$ -spin density is obtained on the two nitrogen atoms of:

$$\rho_1^{\pi} + \rho_2^{\pi} = (2 \times 9.3)/(S^{N} + \sum_X Q^{N}_{N-X} + Q^{X}_{X-N}) = 0.99$$

This suggests a near absence of delocalisation onto the phenyl groups, which is surprising for the  $\pi$ -cation.

which establish significant delocalisation of ca. 30%; the assignment<sup>13</sup> is therefore believed to be tentative.

Received, 12th September 1989; Com. 9/03904J .

## References

- 1 See, e.g., P. S. Engel, W.-K. Lee, G. E. Marschke, and H. J. Shine, J. Org. Chem., 1987, 52, 2813; W. Adam and M. Dorr, J. Am. Chem. Soc., 1987, 109, 1570, and references cited therein.
- 2 C. J. Rhodes and P. W. F. Louwrier, J. Chem. Res. (S), 1988, 38.
- 3 C. J. Rhodes, J. Chem. Soc., Faraday Trans. 1, 1988, 3215.
- 4 F. Williams, Q.-X. Guo, P. A. Petillo, and S. F. Nelsen, J. Am. Chem. Soc., 1988, 110, 7887.

- 5 F. Gerson and X.-Z. Qin, Helv. Chim. Acta, 1988, 71, 1498.
- 6 P. S. Engel, C. J. Rhodes, and H. J. Shine, unpublished results. 7 K. N. Houk, Y.-M. Chang, and P. S. Engel, J. Am. Chem. Soc., 1975, **97**, 1824.
- 8 P. W. Atkins and M. C. R. Symons, 'The Structure of Inorganic Radicals,' Elsevier, Amsterdam, 1967.
- 9 N. C. Baird and D. A. Wernette, Can. J. Chem., 1977, 55, 350.
- 10 M. T. Nguyen, A. F. Heggarty, and P. Brint, J. Chem. Soc., Dalton Trans., 1985, 1915.
- 11 C. J. Rhodes, unpublished results.
- 12 J. M. McBride, J. Am. Chem. Soc., 1977, 99, 6790.
- 13 J. Bargon and K. G. Seifert, Tetrahedron Lett., 1974, 2265.
- 14 W. T. Dixon and R. O. C. Norman, J. Chem. Soc., 1964, 4857.
- 15 W. A. Waters, J. Chem. Soc., 1942, 266.
- 16 D. N. Ramakrishna-Rao and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1985, 991.